TANZANIA ACADEMIC BLOG

Home » Biology » UNDERSTANDING EVOLUTION OF LIVING ORGANISMS

UNDERSTANDING EVOLUTION OF LIVING ORGANISMS

Evolution is the process by which modern organisms have descended from ancient ancestors. Evolution is responsible for both the remarkable similarities we see across all life and the amazing diversity of that life — but exactly how does it work?

Fundamental to the process is genetic variation upon which selective forces can act in order for evolution to occur. This section examines the mechanisms of evolution focusing on:

  • Descent and the genetic differences that are heritable and passed on to the next generation;
  • Mutation, migration (gene flow), genetic drift, and natural selection as mechanisms of change;
  • The importance of genetic variation;
  • The random nature of genetic drift and the effects of a reduction in genetic variation;
  • How variation, differential reproduction, and heredity result in evolution by natural selection; and
  • How different species can affect each other’s evolution through coevolution.

The components of natural selection: variation, differential reproduction, and heredity

Descent with modification

We’ve defined evolution as descent with modification from a common ancestor, but exactly what has been modified? Evolution only occurs when there is a change in gene frequency within a population over time. These genetic differences are heritable and can be passed on to the next generation — which is what really matters in evolution: long term change.

Compare these two examples of change in beetle populations. Which one is an example of evolution?

1. Beetles on a diet
Imagine a year or two of drought in which there are few plants that these beetles can eat.
First generation of starving beetles
All the beetles have the same chances of survival and reproduction, but because of food restrictions, the beetles in the population are a little smaller than the preceding generation of beetles. Second generation of starving beetles
2. Beetles of a different color
Most of the beetles in the population (say 90%) have the genes for bright green coloration and a few of them (10%) have a gene that makes them more brown.
First Generation
Some number of generations later, things have changed: brown beetles are more common than they used to be and make up 70% of the population. Second Generation

Which example illustrates descent with modification — a change in gene frequ

ency over time?

The difference in weight in example 1 came about because of environmental influences — the low food supply — not because of a change in the frequency of genes. Therefore, example 1 is not evolution. Because the small body size in this population was not genetically determined, this generation of small-bodied beetles will produce beetles that will grow to normal size if they have a normal food supply.

The changing color in example 2 is definitely evolution: these two generations of the same population are genetically different. But how did it happen?

Mechanisms of change

Each of these four processes is a basic mechanism of evolutionary change.

Mutation
A mutation could cause parents with genes for bright green coloration to have offspring with a gene for brown coloration. That would make genes for brown coloration more frequent in the population than they were before the mutation.
Mutation
Migration
Some individuals from a population of brown beetles might have joined a population of green beetles. That would make genes for brown coloration more frequent in the green beetle population than they were before the brown beetles migrated into it.
Migration
Genetic drift
Imagine that in one generation, two brown beetles happened to have four offspring survive to reproduce. Several green beetles were killed when someone stepped on them and had no offspring. The next generation would have a few more brown beetles than the previous generation — but just by chance. These chance changes from generation to generation are known as genetic drift.
Genetic drift
Natural selection
Imagine that green beetles are easier for birds to spot (and hence, eat). Brown beetles are a little more likely to survive to produce offspring. They pass their genes for brown coloration on to their offspring. So in the next generation, brown beetles are more common than in the previous generation.
Natural Selection

Download this series of graphics from the Image library.

All of these mechanisms can cause changes in the frequencies of genes in populations, and so all of them are mechanisms of evolutionary change. However, natural selection and genetic drift cannot operate unless there is genetic variation — that is, unless some individuals are genetically different from others. If the population of beetles were 100% green, selection and drift would not have any effect because their genetic make-up could not change.

So, what are the sources of genetic variation?

 

Genetic variation

Without genetic variation, some of the basic mechanisms of evolutionary change cannot operate.

There are three primary sources of genetic variation, which we will learn more about:

  1. Mutations are changes in the DNA. A single mutation can have a large effect, but in many cases, evolutionary change is based on the accumulation of many mutations.
  2. Gene flow is any movement of genes from one population to another and is an important source of genetic variation.
  3. Sex can introduce new gene combinations into a population. This genetic shuffling is another important source of genetic variation.
Genetic shuffling
Genetic shuffling is a source of variation.

 

Mutations

Mutation is a change in DNA, the hereditary material of life. An organism’s DNA affects how it looks, how it behaves, and its physiology — all aspects of its life. So a change in an organism’s DNA can cause changes in all aspects of its life.

Mutations are random
Mutations can be beneficial, neutral, or harmful for the organism, but mutations do not “try” to supply what the organism “needs.” In this respect, mutations are random — whether a particular mutation happens or not is unrelated to how useful that mutation would be.

Not all mutations matter to evolution
Since all cells in our body contain DNA, there are lots of places for mutations to occur; however, not all mutations matter for evolution. Somatic mutations occur in non-reproductive cells and won’t be passed onto offspring.

For example, the golden color on half of this Red Delicious apple was caused by a somatic mutation. The seeds of this apple do not carry the mutation.

The only mutations that matter to large-scale evolution are those that can be passed on to offspring. These occur in reproductive cells like eggs and sperm and are called germ line mutations.

A single germ line mutation can have a range of effects:

  1. No change occurs in phenotype
    Some mutations don’t have any noticeable effect on the phenotype of an organism. This can happen in many situations: perhaps the mutation occurs in a stretch of DNA with no function, or perhaps the mutation occurs in a protein-coding region, but ends up not affecting the amino acid sequence of the protein.
  2. Small change occurs in phenotype
    Cat with curled-ear mutation

    A single mutation caused this cat’s ears to curl backwards slightly.

  3. Big change occurs in phenotype
    Some really important phenotypic changes, like DDT resistance in insects are sometimes caused by single mutations. A single mutation can also have strong negative effects for the organism. Mutations that cause the death of an organism are called lethals — and it doesn’t get more negative than that.

There are some sorts of changes that a single mutation, or even a lot of mutations, could not cause. Neither mutations nor wishful thinking will make pigs have wings; only pop culture could have created Teenage Mutant Ninja Turtles — mutations could not have done it.

The causes of mutations

Mutations happen for several reasons.

  1. DNA fails to copy accurately
    Most of the mutations that we think matter to evolution are “naturally-occurring.” For example, when a cell divides, it makes a copy of its DNA — and sometimes the copy is not quite perfect. That small difference from the original DNA sequence is a mutation.

    Following cell division, the copied DNA is imperfect

    To download this image, right-click (Windows) or control-click (Mac) on the image and select “Save image.”
  2. External influences can create mutations
    Radioactive signMutations can also be caused by exposure to specific chemicals or radiation. These agents cause the DNA to break down. This is not necessarily unnatural — even in the most isolated and pristine environments, DNA breaks down. Nevertheless, when the cell repairs the DNA, it might not do a perfect job of the repair. So the cell would end up with DNA slightly different than the original DNA and hence, a mutation.

    Gene flow

    Gene flow — also called migration — is any movement of individuals, and/or the genetic material they carry, from one population to another. Gene flow includes lots of different kinds of events, such as pollen being blown to a new destination or people moving to new cities or countries. If gene versions are carried to a population where those gene versions previously did not exist, gene flow can be a very important source of genetic variation. In the graphic below, the gene version for brown coloration moves from one population to another.

    Gene flow in beetle populations

    Sex and genetic shuffling

    Shuffling of
	  gene combinations

    Sex can introduce new gene combinations into a population and is an important source of genetic variation.You probably know from experience that siblings are not genetically identical to their parents or to each other (except, of course, for identical twins). That’s because when organisms reproduce sexually, some genetic “shuffling” occurs, bringing together new combinations of genes. For example, you might have bushy eyebrows and a big nose since your mom had genes associated with bushy eyebrows and your dad had genes associated with a big nose. These combinations can be good, bad, or neutral. If your spouse is wild about the bushy eyebrows/big nose combination, you were lucky and hit on a winning combination!

    This shuffling is important for evolution because it can introduce new combinations of genes every generation. However, it can also break up “good” combinations of genes.

    Development

    Development is the process through which an embryo becomes an adult organism and eventually dies. Through development, an organism’s genotype is expressed as a phenotype, exposing genes to the action of natural selection.

    Studies of development are important to evolutionary biology for several reasons:

    Explaining major evolutionary change
    Changes in the genes controlling development can have major effects on the morphology of the adult organism. Because these effects are so significant, scientists suspect that changes in developmental genes have helped bring about large-scale evolutionary transformations. Developmental changes may help explain, for example, how some hoofed mammals evolved into ocean-dwellers, how water plants invaded the land, and how small, armored invertebrates evolved wings.

    Mutated fly with two pairs of wings Mutated fly with legs instead of antennae
    Mutations in the genes that control fruit fly development can cause major morphology changes, such as two pairs of wings instead of one. Another developmental gene mutation can cause fruit flies to have legs where the antennae normally are, as shown in the fly on the right.

    Learning about evolutionary history
    An organism’s development may contain clues about its history that biologists can use to build evolutionary trees.

    Developmental stages of embryos
    Characters displayed by embryos such as these may help untangle patterns of relationship among the lineages.

    Limiting evolutionary change
    Developmental processes may constrain evolution, preventing certain characters from evolving in certain lineages. For example, development may help explain why there are no truly six-fingered tetrapods.

    Artificial selection

    Long before Darwin and Wallace, farmers and breeders were using the idea of selection to cause major changes in the features of their plants and animals over the course of decades. Farmers and breeders allowed only the plants and animals with desirable characteristics to reproduce, causing the evolution of farm stock. This process is called artificial selection because people (instead of nature) select which organisms get to reproduce.

    As shown below, farmers have cultivated numerous popular crops from the wild mustard, by artificially selecting for certain attributes.

    Artificial selection in the mustard family

    These common vegetables were cultivated from forms of wild mustard. This is evolution through artificial selection.

    Misconceptions about natural selection

    Because natural selection can produce amazing adaptations, it’s tempting to think of it as an all-powerful force, urging organisms on, constantly pushing them in the direction of progress — but this is not what natural selection is like at all.

    First, natural selection is not all-powerful; it does not produce perfection. If your genes are “good enough,” you’ll get some offspring into the next generation — you don’t have to be perfect. This should be pretty clear just by looking at the populations around us: people may have genes for genetic diseases, plants may not have the genes to survive a drought, a predator may not be quite fast enough to catch her prey every time she is hungry. No population or organism is perfectly adapted.

    Second, it’s more accurate to think of natural selection as a process rather than as a guiding hand. Natural selection is the simple result of variation, differential reproduction, and heredity — it is mindless and mechanistic. It has no goals; it’s not striving to produce “progress” or a balanced ecosystem.

    Formula for natural selection

    Evolution does not work this way
    Evolution does not work this way.

    This is why “need,” “try,” and “want” are not very accurate words when it comes to explaining evolution. The population or individual does not “want” or “try” to evolve, and natural selection cannot try to supply what an organism “needs.” Natural selection just selects among whatever variations exist in the population. The result is evolution.

    At the opposite end of the scale, natural selection is sometimes interpreted as a random process. This is also a misconception. The genetic variation that occurs in a population because of mutation is random — but selection acts on that variation in a very non-random way: genetic variants that aid survival and reproduction are much more likely to become common than variants that don’t. Natural selection is NOT random!

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: